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This article gives the results of an investigation of the convective equilibrium of a 
reactive liquid saturating a horizontal porous bed, bounded by isothermal planes which have 
identical tempeatures, As the result of a chemical reaction of zero order, heat is evolved 
in the whole volume of the liquid; the amount of the heat evolutlon depends exponentially on 
the temperature. It is well known that [i], in such a system, in some interval of values of 
the Frank--Kamenetskii parameter 6, there are two possible sets of steady-state of heat~con- 
ducting conditions, corresponding to the mechanical equilibrium of the medium. One of these 
setsof conditions, corresponding to lower hearings, is stable; the second, characterized 
by higher equilibrium temperature conditions, is unstable. Since the heat-evolvlng medium 
is movable, there arises the question of the stability of these steady-state heat-evolving 
conditions with respect to the appearance of convection. In this work, the limits of the 
stability of both the lower and upper equilibrium states are determined. It is shown that 
the critical Rayleigh number, determining the threshold of convection, depends strongly on 
the rate of the chemical reaction. With all values of the parameters, the instability has a 
monotonic character, 

An infinite horizontal bed of a porous medium with a thickness d is bounded by ideally 
heat-conducting impermeable planes. In the bed, saturated by a chemically active liquid, a 
homogeneous, exothermic decomposition reaction isgoing forward. The heat effect of the re- 
action is assumed to be high, which makes it possible to leave burn-up of the reagent out 
of consideration; i.e., a model of a reaction of zero order is used. The rate of the chemi- 
cal process is described by the Arrhenius law. The bed boundaries are maintained at a con- 
stant temperature To. The z axis is directed vertically upward, md the xy plane coincides 
with the lower bed boundaries~ 

The kinetics of the reaction described differ considerably from those discussed in [2], 
in which an investigation was made of the development of concentrational convection in a por- 
ous medium, in the case of an isothermal reaction of the first order, The convective stabil- 
ity of a horizontal bed of an ordinary chemically active liquid with a reaction of zero order 

has been studied in [3, 4]. 

The equations of thermal convection of a reactive liquid in a porous medium differ from 
the equations of convective filtration [5] by the presence of a term describing the heat 
sources and have the form 

t 'V vP + ~-  v - g[~Ov = o, 

oo ( , ~ , ' )  
(pep), ~ + (pcp)lvvO = :~sAO -[- Qko exp - - / - ~  , div v = O. 

(I)  

The filtration rate, as a rule, is small, which allows us to neglect the inertial terms in 

the equation of motion. 

The following notation is introduced in system (i): v is the filtration rate; p is the 
convective addition to the pressure; e is the temperature, reckoned from the temperature of 
the boundaries of the bed: e = T -- T,, where T and T, are the absolute temperatures, respec~ 
tively, inside the bed and at its boundaries; p is the density; ~ is the kinematic viscosity; 

is the coefficient of volumetric expansion of the liquid; K is the permeability; Cp is the 
heat capacity at constant pressure; ~ is the coefficient of thermal conductivity; g is the 
acceleration due to gravity; Y is a unit vector, directed vertically upward; Q is the heat 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki~ No, i, pp. 
139-143, January-February, 1978. Original article submitted January 211 1977, 

114 0021-8944/78/1901-0114507.50 �9 1978 Plenum Publishing Corporation 



effect of the reaction; k. is the preexponential factor; E is the activation energy; R is 
the universal gas constant. The subscripts Z and s denote quantities relating, respectively, 
to the liquid and to the porous medium, saturated by the liquid, 

We rewrite (i) in dimensionless form, retaining the previous notation and selecting the 
following units of measurement: the distance d, the time dax, the velocity x/d, the tempera- 
ture RT~/E, the pressure pZ~x/K, where X = ~s/(pCp)Z: 

V p + v - - B a O ~ : - O ,  

baO/Ot+ v v O  == b O  -}-5 exp (O/t + 30) ,  div v = O. ( 2 )  

The dimensionless parameters of the problem: Ra = gBRT~Kd/Evx is the filtration analog 
of the Rayleigh number; ~ = Qk| exp(--E/RTo)/xsRT~ is the Frank-Kamenetskii parameter; 
8 = RT:/E is a small parameter, whose values do not exceed 0.i; b = (pep)s/(PCp)Z; the values 
of b are usually close to unity and, in what follows, we assume b = i. 

The mechanical equilibrium of the liquid, with which vo = 0 and ~/~t = 0, is described 
by the equations 

VPo = [~aOoy, AOo --~ - -~  exp (Oo/0 + ~Oo)). (3~ 

At the boundaries z = 0, i, Oo = O. 

The first equation of system (3) shows that a necessary condition of equilibrium is a 
vertical tempeature gradient, which, in the presence of internal heat sources, depends on z. 

The solution of the nonlinear differential equation of thermal conductivity from (3) is 
given in [i]. It is shown that steady states of the system with B = 0 are possible only with 
values of 6 from 0 to 3.514. The upper boundary of this interval ~cr determines the thresh- 
old of thermal explosion. The equilibrium distributions of the temperature are symmetrical 
with respect to the middle of the bed (see [i, 4]), where the temperature attains a maximum 
| Figure 1 gives the dependence of eom on ~ for B = 0 and B = 0.i. In the region 6 < ~cr, 
there exist two sets of steady-state conditions, the upper of which is unstable [i]. 

Let us investigate the convective stability of the above-described equilibrium states. 
For this purpose, we consider small perturbations of the velocity, the temperature, and the 
pressure (for the perturbations, we retain the previous notation for v, 8, p). After lin- 
earization taking account of (3), the system of equations for the perturbations assumes the 
form 

VP +v--RaO 7 =0, 
~__O_e (4) Ot + vv@~ = A@ - / 6  exp (oo/Cl+ ~0o)) @, div v - -  O, 

At the walls of the bed, the normal component of the filtration rate and the perturba- 
tions of the temperature revert to zero 

= 0, ~ = 0 with Z = O; l ,  ( 5 )  

Let us consider normal perturbations, depending on the horizontal coordinates and the 
time in accordance with the law exp[--lt + i(k~x + k2y)], where k~ and k2 are real wave num- 
bers; A is the decrement of the perturbations. 

Eliminating the pressure from the equation of motion, from (4), (5) we obtain a bound- 
ary-value problem for the amplitudes of the perturbations of the velocity w(z) and the tem- 
perature 8(z) 

(w': -- hhv) ...... /)'iI,,), 

-- XO = (0"--- i~z(!~ -- u:t:>~ - 5 .~p (e./(i .-- i:;e,,)) 
�9 (i -i-Iv.%) ~ ' i). 

zv =: O, 0 -- 0 with z : O; i, 

(6) 

where k 2 = k~ + k~; a prime denotes differentiation with respect to z. 

The boundary-value problem was solved using the Runge--Kutta-Merson method [6], which 
makes it possible to automatically select a spacing of the integration which will assure a 
given accuracy of the calculations. The numerical calculations were made in an electronic 
computer. The use of this method for solution of problems of convective stability is dis- 
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cussed in [7]. In accordance with [7], the equations of the boundary-value problem were 
represented in the form of a system of ordinary differential equations of the first order, 
and, using the method described, two linearly independent partial solutions of the problem 
were constructed, satisfying the boundary conditions at the start of the integration interval 
z = 0. From the requirement of the existence of a nontrivial solution of the problem, saris g 
fying the conditions at the end point of the integration z - i. there follows a characteris~ 
tic relationship from which the eigenvalues of the problem are determined. The eigenvalues 
of the problem are the decrements of the normal perturbations X, depending on three parame- 
ters: the Rayleigh number, the Frank--Kamenetskii parameter, andthe wave number. In the 
general case, the decrements are complex: X = k r + i% i. Stable states correspond to %r > O, 
unstable states to %r < O; at the limit of stability, Ar = O. 

In distinction from the usual problem of the convective stability of a horizontal bed 
of liquid without internal heat sources, for the problem under discussion, it is not possible 
to prove the principle of monotonicity; however, calculations show that all the decrements 
are real (%i = 0) and there are no vibrational conditions in the system, 

In the limiting case Ra = 0, which is realized, for example, in the absence of a lifting 
force, problem (6) reduces to a boundary-value problem, determining the stability of equilib- 
rium solutions in a liquid at rest. Its solution gives the spectrum of the decrements X(~). 
From the form of the spectrum of %(~) it follows that, with Ra = 0, steady-state equilibrium 
heat~conducting conditions, corresponding to small heatings, are stable, and conditions cor- 
responding to large hearings, are unstable; here, perturbations with a plane-parallel struc- 
ture (k = 0) are found to be the most dangerous. 

Let us consider the general case, where the Rayleigh number differs from zero. As a re- 
sult of an exothermic chemical reaction, the liquid inside the bed is heated and, in the 
upper half, there arises an unstable stratification, leading, with certain values of the 
parameters, to a crisis of the equilibrium of the system and to the development of convec~ 
tion. The threshold for the appearance of instability for a fixed value of ~ is character- 
Ized by a neutral curve of Ra(k). In Fig. 2. the solid lines show a family of neutral curves 
of the convective stability of lower steady-state thermal conditionswith different values 
of the Frank-Kamenetskil (~ = i, 2, 3). The unstable region (X < 0) is situated above the 
curves. Figure 2 exhibits a considerable lowering of the stability with a rise in ~. The 
destabilization is connected with the fact that, with an increase in the Frank--Kamenetskii 
parameter for this solution there is an increase in the equilibrium temperature at the cen~ 
ter of the bed (see Fig. I); i.e., there is a rise in the ~radlent of the density in its 
unstably stratified part, 

The effect of the small parameter 8 is insignificant, and leads to a small increase in 
the convective instability of the system. A neutral curve, corresponding to ~ = 3 and 8 ~ 
0.I is shown in Fig. 2 by the dot-dash line. The dashed curves of the neutral perturbations 
in Fig. 2 relate to the second equilibrium solution (~ = 3,51,3). A stable state of the ll- 
quid corresponds to the region below the limits of stability. With a change in the heat- 
conducting conditions for values of ~ close to ~cr, there is deformation of the neutral 
curves, and long-wave perturbations lead to absolute instability of the upper steady state. 
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The decrease in ~, accompanying an increase in 8e m for the second solution, broadens the re- 
gion of absolute instability. Thus, a rise in the Rayleigh number does not lead to stabiliza~ 
tion of the second equilibrium state of the system, unstable under conditions of pure thermal 
conductivity. 

We note that the picture obtained for convective instability in a bed of a porous medi- 
um is qualitatively similar to the known picture for a viscous chemically active liquid [3, 
4]. 

Dependences of the minimal critical Rayleigh number Ra, and the corresponding critical 
wave number k, on ~ for the lower equilibrium conditions are shown in Fig. 3. The curves are 
plotted with limiting values of 8, i.e.. 0 and 0.i. With ~ = ~cr' Ra, has a finite value. 

The author expresses his thanks to E. M. Zhukhovitskii for posing the problem and for 
his interest in the work. 
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